Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.440
Filtrar
1.
Sci Data ; 11(1): 316, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538617

RESUMO

Despite the wealth of publicly available single-cell datasets, our understanding of distinct resident immune cells and their unique features in diverse human organs remains limited. To address this, we compiled a meta-analysis dataset of 114,275 CD45+ immune cells sourced from 14 organs in healthy donors. While the transcriptome of immune cells remains relatively consistent across organs, our analysis has unveiled organ-specific gene expression differences (GTPX3 in kidney, DNTT and ACVR2B in thymus). These alterations are linked to different transcriptional factor activities and pathways including metabolism. TNF-α signaling through the NFkB pathway was found in several organs and immune compartments. The presence of distinct expression profiles for NFkB family genes and their target genes, including cytokines, underscores their pivotal role in cell positioning. Taken together, immune cells serve a dual role: safeguarding the organs and dynamically adjusting to the intricacies of the host organ environment, thereby actively contributing to its functionality and overall homeostasis.


Assuntos
Perfilação da Expressão Gênica , Sistema Imunitário , Transcriptoma , Humanos , Citocinas , Regulação da Expressão Gênica , Timo , Rim , Sistema Imunitário/citologia , Fatores de Transcrição
2.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(11): 1729-1747, 2023 Nov 06.
Artigo em Chinês | MEDLINE | ID: mdl-38008557

RESUMO

The detection of immune cell subsets plays a very important role in the clinical diagnosis and treatment of various benign and malignant diseases and health management. In order to better carry out in-depth research on different functional immune cell subsets, establish reference intervals for clonality related indicators, establish special reference intervals for immune aging, individualized dynamic monitoring and treatment recovery, and discover the clinical significance of immune cells other than lymphocytes, it is urgent to analyze the peripheral blood immune cell subsets in a refined way. Multiparameter flow cytometry is an important technical method to detect immune cell subsets and evaluate immune function. In order to standardize the refined detection methods and protocols of peripheral blood immune cell subsets by flow cytometry, and further promote its application in clinical diagnosis and treatment of diseases and health management, Laboratory Medicine Committee of Chinese Association of Integrative Medicine (LMC-CAIM) organized experts to formulate this expert consensus.


Assuntos
População do Leste Asiático , Citometria de Fluxo , Sistema Imunitário , Humanos , Consenso , Citometria de Fluxo/métodos , Sistema Imunitário/citologia
4.
Front Immunol ; 14: 1221008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662903

RESUMO

Recent advancements in immunology and chemistry have facilitated advancements in targeted vaccine technology. Targeting specific cell types, tissue locations, or receptors can allow for modulation of the adaptive immune response to vaccines. This review provides an overview of cellular targets of vaccines, suggests methods of targeting and downstream effects on immune responses, and summarizes general trends in the literature. Understanding the relationships between vaccine targets and subsequent adaptive immune responses is critical for effective vaccine design. This knowledge could facilitate design of more effective, disease-specialized vaccines.


Assuntos
Vacinas , Vacinas/imunologia , Desenho de Fármacos , Imunidade , Sistema Imunitário/citologia , Humanos , Animais
5.
Biomolecules ; 13(6)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37371563

RESUMO

Both sensory neurons and immune cells, albeit at markedly different levels, express the vanilloid (capsaicin) receptor, Transient Receptor Potential, Vanilloid-1 (TRPV1). Activation of TRPV1 channels in sensory afferent nerve fibers induces local effector functions by releasing neuropeptides (most notably, substance P) which, in turn, trigger neurogenic inflammation. There is good evidence that chronic activation or inactivation of this inflammatory pathway can modify tumor growth and metastasis. TRPV1 expression was also demonstrated in a variety of mammalian immune cells, including lymphocytes, dendritic cells, macrophages and neutrophils. Therefore, the effects of TRPV1 agonists and antagonists may vary depending on the prominent cell type(s) activated and/or inhibited. Therefore, a comprehensive understanding of TRPV1 activity on immune cells and nerve endings in distinct locations is necessary to predict the outcome of therapies targeting TRPV1 channels. Here, we review the neuro-immune modulation of cancer growth and metastasis, with focus on the consequences of TRPV1 activation in nerve fibers and immune cells. Lastly, the potential use of TRPV1 modulators in cancer therapy is discussed.


Assuntos
Sistema Imunitário , Células Receptoras Sensoriais , Canais de Cátion TRPV , Animais , Humanos , Capsaicina/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Mamíferos/metabolismo , Neuropeptídeos/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Sistema Imunitário/citologia , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/metabolismo
6.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298230

RESUMO

Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.


Assuntos
Plaquetas , Neoplasias , Neoplasias Ovarianas , Feminino , Humanos , Plaquetas/imunologia , Plaquetas/patologia , Células Mieloides/metabolismo , Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Prognóstico , Microambiente Tumoral , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Receptor Cross-Talk/imunologia
7.
Science ; 380(6640): eabo7649, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023203

RESUMO

Contemporary studies have completely changed the view of brain immunity from envisioning the brain as isolated and inaccessible to peripheral immune cells to an organ in close physical and functional communication with the immune system for its maintenance, function, and repair. Circulating immune cells reside in special niches in the brain's borders, the choroid plexus, meninges, and perivascular spaces, from which they patrol and sense the brain in a remote manner. These niches, together with the meningeal lymphatic system and skull microchannels, provide multiple routes of interaction between the brain and the immune system, in addition to the blood vasculature. In this Review, we describe current ideas about brain immunity and their implications for brain aging, diseases, and immune-based therapeutic approaches.


Assuntos
Encéfalo , Sistema Imunitário , Animais , Humanos , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Movimento Celular/imunologia , Sistema Imunitário/citologia , Sistema Linfático/imunologia , Meninges/imunologia , Células Mieloides/imunologia
8.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047140

RESUMO

Integrins are a group of heterodimers consisting of α and ß subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.


Assuntos
Progressão da Doença , Sistema Imunitário , Imunoterapia , Integrinas , Neoplasias , Animais , Humanos , Linfócitos B/imunologia , Células Dendríticas/imunologia , Integrinas/antagonistas & inibidores , Integrinas/metabolismo , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Neutrófilos/imunologia , Linfócitos T/imunologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia
9.
Immunol Rev ; 315(1): 11-30, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36929134

RESUMO

It has been over three decades since Drs. Herzenberg and Herzenberg proposed the layered immune system hypothesis, suggesting that different types of stem cells with distinct hematopoietic potential produce specific immune cells. This layering of immune system development is now supported by recent studies showing the presence of fetal-derived immune cells that function in adults. It has been shown that various immune cells arise at different embryonic ages via multiple waves of hematopoiesis from special endothelial cells (ECs), referred to as hemogenic ECs. However, it remains unknown whether these fetal-derived immune cells are produced by hematopoietic stem cells (HSCs) during the fetal to neonatal period. To address this question, many advanced tools have been used, including lineage-tracing mouse models, cellular barcoding techniques, clonal assays, and transplantation assays at the single-cell level. In this review, we will review the history of the search for the origins of HSCs, B-1a progenitors, and mast cells in the mouse embryo. HSCs can produce both B-1a and mast cells within a very limited time window, and this ability declines after embryonic day (E) 14.5. Furthermore, the latest data have revealed that HSC-independent adaptive immune cells exist in adult mice, which implies more complicated developmental pathways of immune cells. We propose revised road maps of immune cell development.


Assuntos
Sistema Imunitário , Sistema Imunitário/citologia , Sistema Imunitário/crescimento & desenvolvimento , Humanos , Animais , Hematopoese , Embrião de Mamíferos/citologia , Células-Tronco Hematopoéticas/citologia , Linfócitos/citologia , Linhagem da Célula
10.
Semin Immunol ; 66: 101724, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758379

RESUMO

Innate effector cells are immune cells endowed with host protective features and cytotoxic functions. By sensing the tissue environment, innate cells have an important role in regulating the transition from homeostasis to inflammation and the establishment of pathological states, including the onset and development of cancer. The tumor microenvironment induces molecular and functional modifications in innate cells, dampening their capability to initiate and sustain anti-tumor immune responses. Emerging studies clearly showed a contribution of the microbiota in modulating the functions of innate cells in cancer. Commensal microorganisms can not only directly interact with innate cells in the tumor microenvironment but can also exert immunomodulatory features from non-tumor sites through the release of microbial products. The microbiota can mediate the priming of innate cells at mucosal tissues and determine the strength of immune responses mediated by such cells when they migrate to non-mucosal tissues, having an impact on cancer. Finally, several evidences reported a strong contribution of the microbiota in promoting innate immune responses during anti-cancer therapies leading to enhanced therapeutic efficacy. In this review, we considered the current knowledge on the role of the microbiota in shaping host innate immune responses in cancer.


Assuntos
Sistema Imunitário , Imunidade Inata , Imunoterapia , Microbiota , Neoplasias , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Imunidade Inata/imunologia , Microbiota/imunologia , Neoplasias/imunologia , Neoplasias/microbiologia , Neoplasias/terapia , Microambiente Tumoral , Homeostase , Animais
11.
Science ; 379(6633): eabp8964, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795835

RESUMO

For decades, immunologists have studied the role of circulating immune cells in host protection, with a more recent appreciation of immune cells resident within the tissue microenvironment and the intercommunication between nonhematopoietic cells and immune cells. However, the extracellular matrix (ECM), which comprises at least a third of tissue structures, remains relatively underexplored in immunology. Similarly, matrix biologists often overlook regulation of complex structural matrices by the immune system. We are only beginning to understand the scale at which ECM structures determine immune cell localization and function. Additionally, we need to better understand how immune cells dictate ECM complexity. This review aims to highlight the potential for biological discovery at the interface of immunology and matrix biology.


Assuntos
Proteínas da Matriz Extracelular , Matriz Extracelular , Sistema Imunitário , Matriz Extracelular/imunologia , Proteínas da Matriz Extracelular/metabolismo , Sistema Imunitário/citologia , Humanos , Animais
12.
Immunol Rev ; 315(1): 108-125, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36653953

RESUMO

Historically, the immune system was believed to develop along a linear axis of maturity from fetal life to adulthood. Now, it is clear that distinct layers of immune cells are generated from unique waves of hematopoietic progenitors during different windows of development. This model, known as the layered immune model, has provided a useful framework for understanding why distinct lineages of B cells and γδ T cells arise in succession and display unique functions in adulthood. However, the layered immune model has not been applied to CD8+ T cells, which are still often viewed as a uniform population of cells belonging to the same lineage, with functional differences between cells arising from environmental factors encountered during infection. Recent studies have challenged this idea, demonstrating that not all CD8+ T cells are created equally and that the functions of individual CD8+ T cells in adults are linked to when they were created in the host. In this review, we discuss the accumulating evidence suggesting there are distinct ontogenetic subpopulations of CD8+ T cells and propose that the layered immune model be extended to the CD8+ T cell compartment.


Assuntos
Linfócitos T CD8-Positivos , Sistema Imunitário , Subpopulações de Linfócitos T , Humanos , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/imunologia , Desenvolvimento Humano/fisiologia , Sistema Imunitário/citologia , Sistema Imunitário/crescimento & desenvolvimento , Sistema Imunitário/imunologia , Sistema Imunitário/fisiologia , Imunidade/imunologia , Imunidade/fisiologia , Subpopulações de Linfócitos T/imunologia
13.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675167

RESUMO

Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors. Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif (REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines. In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing knowledge of the role of RasGRP1 in leukemia and other cancers.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Sistema Imunitário , Neoplasias , Humanos , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Nucleotídeos de Guanina , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T/imunologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia
14.
Nucleic Acids Res ; 51(D1): D1325-D1332, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36271790

RESUMO

Single-cell transcriptome has enabled the transcriptional profiling of thousands of immune cells in complex tissues and cancers. However, subtle transcriptomic differences in immune cell subpopulations and the high dimensionality of transcriptomic data make the clustering and annotation of immune cells challenging. Herein, we introduce ImmCluster (http://bio-bigdata.hrbmu.edu.cn/ImmCluster) for immunology cell type clustering and annotation. We manually curated 346 well-known marker genes from 1163 studies. ImmCluster integrates over 420 000 immune cells from nine healthy tissues and over 648 000 cells from different tumour samples of 17 cancer types to generate stable marker-gene sets and develop context-specific immunology references. In addition, ImmCluster provides cell clustering using seven reference-based and four marker gene-based computational methods, and the ensemble method was developed to provide consistent cell clustering than individual methods. Five major analytic modules were provided for interactively exploring the annotations of immune cells, including clustering and annotating immune cell clusters, gene expression of markers, functional assignment in cancer hallmarks, cell states and immune pathways, cell-cell communications and the corresponding ligand-receptor interactions, as well as online tools. ImmCluster generates diverse plots and tables, enabling users to identify significant associations in immune cell clusters simultaneously. ImmCluster is a valuable resource for analysing cellular heterogeneity in cancer microenvironments.


Assuntos
Perfilação da Expressão Gênica , Sistema Imunitário , Humanos , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Neoplasias/imunologia , Transcriptoma , Microambiente Tumoral/genética , Sistema Imunitário/citologia , Comunicação Celular , Marcadores Genéticos
15.
Nature ; 611(7937): 794-800, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323785

RESUMO

Protective immunity relies on the interplay of innate and adaptive immune cells with complementary and redundant functions. Innate lymphoid cells (ILCs) have recently emerged as tissue-resident, innate mirror images of the T cell system, with which they share lineage-specifying transcription factors and effector machinery1. Located at barrier surfaces, ILCs are among the first responders against invading pathogens and thus could potentially determine the outcome of the immune response2. However, so far it has not been possible to dissect the unique contributions of ILCs to protective immunity owing to limitations in specific targeting of ILC subsets. Thus, all of the available data have been generated either in mice lacking the adaptive immune system or with tools that also affect other immune cell subsets. In addition, it has been proposed that ILCs might be dispensable for a proper immune response because other immune cells could compensate for their absence3-7. Here we report the generation of a mouse model based on the neuromedin U receptor 1 (Nmur1) promoter as a driver for simultaneous expression of Cre recombinase and green fluorescent protein, which enables gene targeting in group 2 ILCs (ILC2s) without affecting other innate and adaptive immune cells. Using Cre-mediated gene deletion of Id2 and Gata3 in Nmur1-expressing cells, we generated mice with a selective and specific deficiency in ILC2s. ILC2-deficient mice have decreased eosinophil counts at steady state and are unable to recruit eosinophils to the airways in models of allergic asthma. Further, ILC2-deficient mice do not mount an appropriate immune and epithelial type 2 response, resulting in a profound defect in worm expulsion and a non-protective type 3 immune response. In total, our data establish non-redundant functions for ILC2s in the presence of adaptive immune cells at steady state and during disease and argue for a multilayered organization of the immune system on the basis of a spatiotemporal division of labour.


Assuntos
Sistema Imunitário , Imunidade Inata , Linfócitos , Animais , Camundongos , Asma/genética , Asma/imunologia , Asma/patologia , Modelos Animais de Doenças , Eosinófilos/patologia , Imunidade Inata/imunologia , Linfócitos/classificação , Linfócitos/imunologia , Proteínas de Fluorescência Verde , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/patologia
16.
Nature ; 608(7922): 397-404, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922511

RESUMO

The human immune system is composed of a distributed network of cells circulating throughout the body, which must dynamically form physical associations and communicate using interactions between their cell-surface proteomes1. Despite their therapeutic potential2, our map of these surface interactions remains incomplete3,4. Here, using a high-throughput surface receptor screening method, we systematically mapped the direct protein interactions across a recombinant library that encompasses most of the surface proteins that are detectable on human leukocytes. We independently validated and determined the biophysical parameters of each novel interaction, resulting in a high-confidence and quantitative view of the receptor wiring that connects human immune cells. By integrating our interactome with expression data, we identified trends in the dynamics of immune interactions and constructed a reductionist mathematical model that predicts cellular connectivity from basic principles. We also developed an interactive multi-tissue single-cell atlas that infers immune interactions throughout the body, revealing potential functional contexts for new interactions and hubs in multicellular networks. Finally, we combined targeted protein stimulation of human leukocytes with multiplex high-content microscopy to link our receptor interactions to functional roles, in terms of both modulating immune responses and maintaining normal patterns of intercellular associations. Together, our work provides a systematic perspective on the intercellular wiring of the human immune system that extends from systems-level principles of immune cell connectivity down to mechanistic characterization of individual receptors, which could offer opportunities for therapeutic intervention.


Assuntos
Comunicação Celular , Sistema Imunitário , Mapas de Interação de Proteínas , Comunicação Celular/imunologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Leucócitos/química , Leucócitos/imunologia , Leucócitos/metabolismo , Ligação Proteica , Proteoma/imunologia , Proteoma/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo
18.
J Immunol ; 208(4): 785-792, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35115374

RESUMO

Unlike the adaptive immune system, the innate immune system has classically been characterized as being devoid of memory functions. However, recent research shows that innate myeloid and lymphoid cells have the ability to retain memory of prior pathogen exposure and become primed to elicit a robust, broad-spectrum response to subsequent infection. This phenomenon has been termed innate immune memory or trained immunity. Innate immune memory is induced via activation of pattern recognition receptors and the actions of cytokines on hematopoietic progenitors and stem cells in bone marrow and innate leukocytes in the periphery. The trained phenotype is induced and sustained via epigenetic modifications that reprogram transcriptional patterns and metabolism. These modifications augment antimicrobial functions, such as leukocyte expansion, chemotaxis, phagocytosis, and microbial killing, to facilitate an augmented host response to infection. Alternatively, innate immune memory may contribute to the pathogenesis of chronic diseases, such as atherosclerosis and Alzheimer's disease.


Assuntos
Doenças Transmissíveis/etiologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Memória Imunológica , Animais , Biomarcadores , Doenças Transmissíveis/metabolismo , Resistência à Doença/genética , Resistência à Doença/imunologia , Suscetibilidade a Doenças/imunologia , Metabolismo Energético , Epigênese Genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
19.
RNA Biol ; 19(1): 290-304, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35130112

RESUMO

Simultaneous measurement of multiple modalities in single-cell analysis, represented by CITE-seq, is a promising approach to link transcriptional changes to cellular phenotype and function, requiring new computational methods to define cellular subtypes and states based on multiple data types. Here, we design a flexible single-cell multimodal analysis framework, called CITEMO, to integrate the transcriptome and antibody-derived tags (ADT) data to capture cell heterogeneity from the multi omics perspective. CITEMO uses Principal Component Analysis (PCA) to obtain a low-dimensional representation of the transcriptome and ADT, respectively, and then employs PCA again to integrate these low-dimensional multimodal data for downstream analysis. To investigate the effectiveness of the CITEMO framework, we apply CITEMO to analyse the cell subtypes of Cord Blood Mononuclear Cells (CBMC) samples. Results show that the CITEMO framework can comprehensively analyse single-cell multimodal samples and accurately identify cell subtypes. Besides, we find some specific immune cells that co-express multiple ADT markers. To better describe the co-expression phenomenon, we introduce the co-expression entropy to measure the heterogeneous distribution of the ADT combinations. To further validate the robustness of the CITEMO framework, we analyse Human Bone Marrow Cell (HBMC) samples and identify different states of the same cell type. CITEMO has an excellent performance in identifying cell subtypes and states for multimodal omics data. We suggest that the flexible design idea of CITEMO can be an inspiration for other single-cell multimodal tasks. The complete source code and dataset of the CITEMO framework can be obtained from https://github.com/studentiz/CITEMO.


Assuntos
Biologia Computacional/métodos , Heterogeneidade Genética , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Análise de Célula Única/métodos , Software , Linhagem da Célula/genética , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Sistema Imunitário/imunologia
20.
BMC Cancer ; 22(1): 2, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980012

RESUMO

BACKGROUND: Oncogenic metabolic reprogramming contributes to tumor growth and immune evasion. The intertumoral metabolic heterogeneity and interaction of distinct metabolic pathways may determine patient outcomes. In this study, we aim to determine the clinical and immunological significance of metabolic subtypes according to the expression levels of genes related to glycolysis and cholesterol-synthesis in bladder cancer (BCa). METHODS: Based on the median expression levels of glycolytic and cholesterogenic genes, patients were stratified into 4 subtypes (mixed, cholesterogenic, glycolytic, and quiescent) in an integrated cohort including TCGA, GSE13507, and IMvigor210. Clinical, genomic, transcriptomic, and tumor microenvironment characteristics were compared between the 4 subtypes. RESULTS: The 4 metabolic subtypes exhibited distinct clinical, molecular, and genomic patterns. Compared to quiescent subtype, mixed subtype was more likely to be basal tumors and was significantly associated with poorer prognosis even after controlling for age, gender, histological grade, clinical stage, and molecular phenotypes. Additionally, mixed tumors harbored a higher frequency of RB1 and LRP1B copy number deletion compared to quiescent tumors (25.7% vs. 12.7 and 27.9% vs. 10.2%, respectively, both adjusted P value< 0.05). Furthermore, aberrant PIK3CA expression level was significantly correlated with those of glycolytic and cholesterogenic genes. The quiescent subtype was associated with lower stemness indices and lower signature scores for gene sets involved in genomic instability, including DNA replication, DNA damage repair, mismatch repair, and homologous recombination genes. Moreover, quiescent tumors exhibited lower expression levels of pyruvate dehydrogenase kinases 1-3 (PDK1-3) than the other subtypes. In addition, distinct immune cell infiltration patterns were observed across the 4 metabolic subtypes, with greater infiltration of M0/M2 macrophages observed in glycolytic and mixed subtypes. However, no significant difference in immunotherapy response was observed across the 4 metabolic subtypes. CONCLUSION: This study proposed a new metabolic subtyping method for BCa based on genes involved in glycolysis and cholesterol synthesis pathways. Our findings may provide novel insight for the development of personalized subtype-specific treatment strategies targeting metabolic vulnerabilities.


Assuntos
Colesterol/biossíntese , Glicólise/genética , Sistema Imunitário/citologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Variações do Número de Cópias de DNA , Reparo do DNA/genética , Bases de Dados Genéticas , Instabilidade Genômica/genética , Glicólise/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Oncogenes/genética , Oncogenes/imunologia , Polimorfismo de Nucleotídeo Único , Prognóstico , Receptores de LDL/genética , Proteínas de Ligação a Retinoblastoma/genética , Transdução de Sinais , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Ubiquitina-Proteína Ligases/genética , Neoplasias da Bexiga Urinária/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...